UNIT -1
PROPERTIES OF MATTER

ELASTICITY

When an external force is applied on a body, which is not
free to move. there will be a relative displacement of the particies
Due to the property of elasticity. the particles tend to regain their
onginal position. The external forces may produce change n length,
volume and shape of the body. This external force which produces
these changes in the body is called deforming force. A body which
experiences such a force is called detormed body. When the
detorming force is removed. the body regains its original state due
to the force developed within the body. This force is called restoning
force. The property of a material to regain its original state when
the deforming force is removed is called elasticity. The bodies which
possess this property are called elastic bodies. Bodies which do

not exhibit the property of elasticity are called plastic. The study of
mechanical properties helps us to select the matenal tor specitic

purposes. For example, springs are made of steel because steel is
highly elastc.

Stress and strain

In a deformed body, restoring force is set up within the
body which tends to bring the body back to the normal position,
The magnitude of these restoring force depends upon the

deformation caused. This restoring force per umt arca of a detormed
body is known as stress.



Restoring force

Stress = —— Nm?
Stre Arca

Its dimensional formula is ML 'T-2

Due to the application of deforming force, length, volume
or shape of a body changes. Or in other words, the body is said to
be strained. Thus, strain produced in a body is defined as the ratio
of change in dimension of a body to the original dimension.

Change in dimension
Original dimension

Strain =

Strain is the ratio of two similar quantities. Therefore it has

no unit.

Elastic limit
If an elastic material is stretched or compressed beyond a

certain limit, it will not regain its original state and will remain
deformed. The limit beyond which permanent deformation occurs

is called the elastic limit.

Bending of beams

Beam
A beam is defined as a rod or bar of uniform cross section

(circular or rectangular) whose length is very much greater than

its thickness.



Bending couple

If a beam is fixed at one end and loaded at the other end, it
bends. The load acting vertically downwards at its free end and
the reaction at the support acting vertically upwards, constitute the
bending couple. This couple tends to bend the beam clockwise.
Since there is no rotation of the beam, the external bending couple
must be balanced by another equal and opposite couple which comes
into play inside the body due to the elastic nature of the body.

The moment of this

elastic couple is called the internal
bending moment. When the beam
is in equilibrium, the external

bending moment = the internal

bending moment.

Plane of bending

The plane of bending is the plane in which the bending takes
place and the bending couple acts in this plane. In figure, the plane
of paper is the plane of bending.

"Neutral axis

When a beam is bent as in figure, filaments like ab in the
upper part of the beam are elongated and filaments like c¢d in the
lower part are compressed. Therefore, there must be a filament
like ef in between, which is neither elongated nor compressed. Such
a filament is known as the neutral filament and the axis of the
beam lying on the neutral filament is the neutral axis. The change



-

m Jength of an) filament is proportional to the distance of the filamep,
from the neutral axis.

Expression for the bending moment
Consider a portion of the beam to be bent into a circular

arc 2s shown in figure. ef is the neutral axis. Let R be the radius
of cunvature of the neutral axis and 0 the angle subtended by it at
1ts centre of curvature C. Filaments above ef are elongated while
filaments below ef are compressed. The filament ef remains

unchanged 1n length.

Let 2’b’ be a filament at a distance
z from the neutral axis. The length of this
filament a’b’ before bending is equal to that
of the corresponding filament on the neural

R

axis ab. \/
We have, original length = ab =R60 :
Its extended length =a’b’=(R + z)0
Increase in the length =a’b’ —ab

=(R+z)0 -RO6=1260

Linear strain = Increase in length / original length -

= ZB6/R6 = Z/R

We know that Emr? is the moment of inertia of the body,
which is equal to = Mk’ similarly, Z8A.z* is called the geometrical
moment of inertia of the cross section of the beam about an axis
through its centre perpendicular to the plane of bending. It is written
as equal to AK* i.e., ESA.Z: = AK?ie., L6A.2? = AK?.



(A = Area of cross section and k — radius of gyration). But
the sum of moments of forces acting on all the filaments 18 the

internal bending moment which comes into play due to the elasticity.
Thus, bending moment of beam = qAK*R.

Notes :
L For a rectangular beam of breadth b, and depth
(thickness) d, A=bd and k? = d%/12

AK? = bd?*/12

For a beam of circular cross section of .
radius r, A = nr’* and K? = r?/4,

L.

nr?

AK? = mqrt

4R

Bending moment =




~ Experimental determination of Young's Modulus p|n and mlcroéEoﬁé ﬁ1ethod A

L

L. Non - uniform bending 77
The given beam is symmetrically 7

supported on two knife-edges figure. A
weight hanger is suspended by means of
a loop of thread from the point C exactly
mid-way between the knife cdges.

A pin 1s fixed vertically at C by some wax. A travelling
microscope is focused on the tip of the pin such that the horizontal
cross wire coincides with the tip of the pin. The reading in the
vertical traverse scale of microscope is noted. Weights are added
is equal steps of m kg and the corresponding readings are noted.

Similarly, readings are noted while unloading. The results are
- tabulated as follows. |



Reading of the microsope

Load in kg

Load Load Mean| y for Mkg

Increasing | Decreasing

The mean depression y is found for a load of M kg. The

length of the beam (/) between the knife edged is measured. The
breadth ‘b’ and thickness ‘d’ of the beam are measured with a

vernier calipers and screw gauge respectively.

Then, y

or q

or o
q

I

wr-
48qAKk?

\\ &
48yAk?

i (W=M 2
== - _ -
48(bd’/12)xy g and Ak? = bd*/12)

Mg/’

~ 4bd’y
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r—— — .- ""'.‘" -
Reading of the microsope

-y —— ——

Load in kg| Load Load  |Mecan| y for Mkg|
Increasing | Decreasing

The mean elevation (y) of the centre for Mkg is found.
The length of the beam / between the knife edges and a the distance
between the point of suspension of the load and the nearer knife-
edge (AC = BD = a) are measured. The breadth b and the thickness

d of the beam are also measured.

_ Wal?  MgaP
8qAk? 8q(bd*/12)

(W = Mg and Ak? = bd*/12)

3Mgal?
2bd’y

Using the above formula we can calculate the young’s

modulus of the material of the beam.




Expression for Young's Modulus non-uniform bending

[ et 4B represent a beam of length /. supported on two knife-
adges at 4 and B and loaded with a weight B at the centre €. The
-.-:.;;::on at each knife-edge 1s W72 acting vertically upwards. The
heam bends as shown in Fig. 1.18. the depression being maximum at
the centre. The bending is non-uniform. Let CD = y.

The portion D4 of the beam may be considered as a cantilever
of length / 2. fixed at D and bending upwards under a load #72. Hence

the elevanon of A above D or,
. -y w2 B
the depression of D below A =y = T ———-—-—48 yTE

W2
e "7
) A
" """ R >
: C .
—_d
A D B
v
wW
Fig 1.18

Note : The inclination of the tangent at the points A and B is given by

& W

— -

C d 16 EAK

Since 0 is small, tan 6 = 0.
g = Wi :
16 EA k°




Experimental determination of Young's Modulus non-uniform bending

e ————

(1) Non-uniform Bending : The given beam s ¢4-----

symmetrically supported on two knife-edges (Fig. 1.21). A/
A werght-hanger 18 suspended by means of a loop of &7

thread trom the point € exactly midway between the
kmte-cdges. A pinis fixed vertically at ( "by some wax.
A travelling microscope 1s focussed on the tip of the pin

such that the honzontal cross-wire coincides with the tip

of the pin. The reading in the vertical traverse scale of
microscope 1s noted. Weights are added in equal steps of

Fig. 1.21

m kg and the corresponding readings are noted, Similarly, readings are noted while unloading. Tt
results are tabulated as tollows :

|

Readings of the microscope
Load in kg - _ ' - v for M kg
Load increasing | Load decreasing Mean

The mean depression y is found for a load of M kg. The length of the beam (/) between

knife-edges is measured. The breadth 4 and the thickness d of the beam are measured with a vern: -
calipers and screw gauge respectively.

3 3
Then, y=-—Wi—20rE=——-P—VL-;—

48 EA k 48 Ak y

. |

or E = Mgl (s W= Mg and Ak = bd®/1:

48 x (bd” /12) x y

Mg/’

E="¢

4bd’y



Expression for Young's Modulus Uniform bending

Consider a beam of negligible m_ass_supporte_d syfnmetrically " W
on two knife-edges 4 and B in a horizontal level (Fig. 1.19). Let
AB=1.

Let equal weights W, W be added to the beam at its ends C and Off FRTTeTmeTeTe D
D.Let AC=BD = a. Then the beam is bent into an arc of a circle. The
reactions on the knife-edges will then be W and W, acting vertically
upwards. Consider the cross-section of the beam at any point P. The =

only forces acting on the part PC of the bea{n are the forces Wat C
and the reaction W at 4.

The external bending moment with respect to P
=W.CP-W.AP=W(CP-AP)=W . AC = Wa.

This must be balanced by the internal bending moment EAK*/R.

Hence, Wa = EAKY/R

Since for a given load W, E, a and Ak?* are constant, R is a constant. The E
bending 1s then said to be uniform. If y is the elevation of the mid-point of AB /\
o e A U
above its normal position (Fig. 1.20), - S - B
EF (2R - EF) = AF? '
y 2R -y) =2y

y.2R = /4 (. »* is negligible)
y = P/8R

Fig. 1.19




Uniform bending : The given beam s supported symmetrically on two, knife-edges A and
B (Fig. 1.22). Two equal weight-hangers are suspended, so that their distances from the klr;fc-cd.‘—ﬁe"
are equal. The elevations of the centre of the beam may be measured accuratcly by using a single
optic level (£). The tront leg of the single optic lever rests on the centre of the loaded beam and the




hind legs are supported on a separate stand. Sr=
A vertical scale (5 and telescope (1) are
arranged i frontofthe mirror The telescope
iy tocussed on the mirror and adjusted so that
the reflected image of the scale in the mirror

is seen through the telescope. The load on 5

cach hanger is increased in equal steps of T
m kg and the corresponding readings on the
scale are noted. Similarly, readings are noted
while unloading. The results are tabulated
as follows Fig. 1.22
Yl Readings of the scale as seen in the telescope Shift in reading
oad in Kg : - - | (
Load increasing | Load decreasing Mean for M kg

The shift in scale reading for M kg is found from the table. Let it be S. If

D = The distance between the scale and the mirror,

x = the distance between the front leg and the plane containing the two hind legs of the optic lever,
then y =S8x/2D.

The length of the beam / between the knife-edges, and a, the distance between the point of
suspension of the load and the nearer knife-edge (4C = BD = a) are measured. The breadth » and the
thickness d of the beam are also measured.

__Wal 2 or Sx __ Mgal :
8E Ak* 2D 8 E(bd’/12)

[Since W = Mg and Ak* = b d*/12]

3 Mgal’D

- Sxbd’

Then, y

4




Torsion of a body
When a body is fixed at one end and twisted about its axisq by

means of a couple at the other end, the body is said to be undes
torsion. Torsion involves shearing strain and so the modulus involyed
is the rigidity modulus.

Torsion of a wire
Expression for couple per unit Twist

Consider a cylindrical wire of length L and radius fixed at its
upper end and twisted through an angle 8 by applying a couple at
the lower end. Consider the cylinder to consist of an infinite number
of hollow co-axial cylinders. Consider one such cylinder of radius
x and thickness dx figure. | '

A line such as AB initially parallel to the axis OO’ of the cylinder
is displaced to the position AB’ through an angle ¢ due to the twisting
couple figure. The result of twisting the cylinder is a shear strain.

The angle ¢of shear = ZBAB’ = ¢

Now BB =x.0=L¢ or ¢ =x.6/L

_ Shearing stress
Angle of shear (¢)

We have, rigidity = n

Shearing stress n. ¢ or ¢ = nx.6/L

~ Shearing force
Area of which the force acts

But, Shearing stress =



Shearing force = Shearing stress x Area on which the force acts

- —

The arca over which the shearing force acts = 2nax dx

: . nx0 )
Hence, the shearing torce = F = I X 2nx dx 4
| nxo
The moment of this force about the = —— x 2x x dx ,)(
axis QO of the cylinder L
-
2nno
= ——— x* dx
L.
. 2mn®
Twisting couple on the whole cylinder = C = T x*dx
nna‘d
_— BIE i i
2L

The couple per unit twist (i.e., the couple when 0 = | radian)

nmna‘l
2L

~
= _



Norte ! /
When an external couple s
al couple. due to cla

apphed on the cylinder to tu,.,
stic force comes into play,
r

at oncee anantemn

the equihibrium posttion, these (wo couples will be equal and oppe,.

Note : 2

If the material is in the form of a hollow cylmdcr of internal

~adius and external radius ‘b’, then

21nd dx

Couple per unit twist

=_2T(b )

Couple per unit twist = ¢ = an(b* - a')/2L

Work done in twisting a wire
Consider a cylindrical wire of length L and radlus ‘a’ fixed at

its upper end and twisted through an angle 0 by applying a couple

at the lower end.

If ¢ is the couple per unit angular twist of the wire, then the

couple required to produce a twist 0 in the wire 1s C = cO.

The work done in twisting the wire through a small angle dO is
Cd0 =0 do ,

The total work done in twisting the wire through an angle 0.



=W = Ocho do

= 7 cB?
The work done in twnstmg the wire is stored up in the wire a
potential energy.



TORSIONAL OSCILLATIONS OF A BODY o=

- Suppose a wire s clamped vertically at one end and the other end carrie

\ @ *v‘r"; (ive g A IE"S

bar or a cvhinder) of moment of imertia 7 about the wire as the axis et the length radios and nigidity

modulus of the wire be respectively £ aand G When the body is given a shight ratation by applying

torque. say by the hand, the wire is twasted 1 the body i released, the body oscillates in the horizon

tal

plane about the wire as axis These osaillations are called Torsional ose tllations and the arrangerment

is known as a Jorsion pendulum

Letus consider the energy of the vibrating system when the angle of twist 15 6 et o, be the

angular velocity of the body

: , ; : I
T'he potential energy of the wire due to the twist ¢ 0

2
The kinetic energy of the| I 5 1 (d6 :
. . - Jo® ==]| —
body due to its rotation | 2 2\ di
The total energy| 1 (40 P )
of the system = 5 ! -;;) + 5 ch” = constant
Differentiating this with respect to ¢,
1 ,do d°
P22 B 0 LS L,
2 dt dr* 2 dt
dZe 2 X
or 1 2+c~9=00r£+59=0
dt d* 1

The body has simple harmonic motion and its period is given by

T=21t\/Z
c

Rigidity modulus by Torsion pendulum (Dynamic torsion
method) :

The torsion pendulum consists of a wire with one end fixed in a split
chuck and the other end to the centre of a circular disc as in Fig. 1.10.

Two equal symmetrical masses (each equal to m) are placed along a
diameter of the disc at equal distances d, on either side of the centre of the
disc. The disc is rotated through an angle and is then released. The system
executes torsional oscillations about the axis of the wire. The period of
oscillations 7', is determined.

I
Then Tl =2x [+
(.

i i

¢

cam




Here, I, = Moment of inertia of the whole system about the axis of the wire and
¢ = torque per unit twist.

Let I, = M.1. of the disc alone about the axis of the wire.

i = M.L. of each mass about a parallel axis passing through its centre of gravity.
Then by the parallel axes theorem,
I, =1,+2i+2md?
4n*

TP = = [y 2i+2m.dY) ()

The two masses are now kept at equal distances d, from the centre of the disc and the
corresponding period T, is determined. Then,

4n’ _
1= ; [, +2i + 2md22] +:(2)
2 2 _ 4n’ 2 2
Iy -T, *—C——-2m-(d2 —d,") ..(3)
But ¢ =n Ga*/2L
An* 2m (d,? - d) 2L
Hence T,2-T} = 2
n Ga
16 n Lm (d,> —d\%)
W G = 4 ;2 a2
a (I, - Ty")
Using this relation, G is determined.
M.1. of the disc by torsional oscillations. The two equal masses are remov :
: . eda
T, is found when the disc alone is vibrating. Then, nd the period
4 ol
Tj2=——1Iy or I =0
4 n- .(4)
41’ 2m(d,? - 42
From (3), ¢ — i 3__)_ __d!__)
T, =T*
~ |
4 ¢ 2 2 2 ey ) <
Hence IU n 2m (rli (!| ) _ [“—_ _ 2m ((/?' diz) 7;1:
[ this rel; =T 4 e I
rom this relation . the moment of 5 I

nertia of the dise .
of the wire 1s calculated a ol the disc about the axis
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\ termination of rigidity modulus -Static torsion method
Searle’s apparatus :

| The experimental rod is rigidly fixed at one end A and fitted
into the axle of a wheel W at the other end B figure.

The wheel is provided with a grooved edge over which passes
a tape. The tape carries a weight hanger at its free end. The rod
can be_ twisted by adding weights to the hanger. The angle of twist
can be measured by means of two pointers fixed at Q and R.
Which move over circular scales S, and S,. The scales are marked

in degrees with centre zero.

When no weights on the, hanger, the initial readings the pointers
on the scales are adjusted to be zero. Eoads are added in steps of
m kg (conveniently 0.2 kg). The readings on the two scales are
noted for every load, both while loading and unloading. The
experiment is repeated after reversing the twisting couple by winding



Load

Reading on §,

" Reading on S,

Torque Clockwise

Torque
Anticlockwise

Torque Clockwise

Torque
Anticlockwise

Load
increasing

Load
decreasing

Load
increasing

Load
decreasing

Mean

Load
Increasing

Load
decreasing

Load
increasing

Load
decreasing

Mean

0 for
Mkg




the tape over the wheel in the opposite way. The observations arc

tabulated .

The reading in the last column give the twist for a load of M
Kg for the length QR (=L) of the rod.

The radius a of the rod and the radius R of the wheel are
measured.

If a load of M kg is suspended from the free end of the tape,
the twisting couple = Mg R.

The angle of twist 0 degrees = 0.7/ 180 radians.

' nna* On
The restoring couple =
: 2L 180
o nna*  Om 360 M g RL
The equilibrium MgR = orn= -
2L 180 n-a‘0

Since occurs in the fourth power in the relation used it should
be measured very accurately.

Notes

I.  Weeliminate the error due to the eccentricity of the wheel by

applying the couple in both clockwise and anticlockwise
directions.

We climinate errors due to any slipping at the clamped end by
observing reading at two points on the rod.



Surface Tension
Definition

It may be defined as the force per unit length of it a line draw;
in the liquid surface acting perpendicular to it at every point ang
tending to pull the surface a part along the line.

Unit of surface tension -
Surface tension being force per unit length, its ST unit is Newton

per metre (Nm™).

Dimensions of Surface Tension
Since it is the ratio of a force to a2 len

MLT?/ L = MT™

gth, its dimension are



Drop Weight method of determining the surface tension of
a liquid
Experiment

O

A short glass tube is connected to the lower end of a burette
‘(or funnel) clamped vertically by means of a rubber tube (figure).
The funnel is filled with the liquid whose surface tensions is to be
determined. A beaker is arranged under the glass tube to collect
the liquid dropping from the funnel. The stopcock is adjusted so



| swwiously weighted
that the liquid drops are formed slowly Ina previously K

beaker a know N number of drops are collected

The beaker iy ARain weighted.  The difference between

this weight and the w cight of the ¢
50 drops of the liquid.
Calculated.

mpty beaker gives the weight of

From this the mass m of each drop 15
The inner radius ¢ of the tube

is determined using a
vernier calipers.

The surface tension of (he

liquid at the room
temperature g calculated using the f.

drop gets detached, it assumes a cylindrical shape at the orifice of
the tube. Let o = ST of the liquid and r = radius of the orifice.

Excess pressure (p) inside the drop over the outside
atmospheric pressure = g/r

The area of the cross section is 2. Therefore, downward
force on the drop due to this excess of pressure = nr? — o/r

The weight mg of the drop also acts vertically downwards.
Total downward force on the drop = nr’c/r + mg

This downward force is balanced by the upwards pull due
to surface tension zero acting along a circle of radius r. Therefore

=fro +m
2nro = nr’c/r + mg or 2nrc g



g = mg/nr

But the equilibrium of the drop at the instant of its
detachments is dynamic and not static. Lord Rayleighty taking

dynamical aspect into account showed that 6 = mg/3.8r



Interfacial tension
At the surface of separation between two immiscible liquid

there is a tension similar to surface tension. It is called the interfacial

tension.

Definition

When one liquid rests on another without mixing with it the
interface between the two liquids possesses energy just like the
surface of a liquid. The interfacial tension is the value of the force

acting per metre normal to a line drawn on the interface.



' [ i etween
Experiment to determine the interfacial tension b
Water ang Kerosene

Sufficient amount of the lighten liquid (kerosene) is taken
in a beaker.

The weight w, of the baker with. kerosene is
determined. The heavier liquid (water) is taken in the burette
(figure), The glags tube is fixed vertically with its end under the
Surface of kerosene. The flow of water is regulated so the drops

r
ach themselves into kerosene one by one. Afte

collecting 50 drops, e beaker is again weighted. Let this
be W,. Then W~ w

of water det

weight
1 8ives the mass of 50 drops. From this the
ach drop is calculated.

Water

Kerosene

The interfacial tension o between water and kerosene is
calculated using the formula.

_ mg [l L
°T 3.8r P,




Theory
Let p, and p, be the densities of water and kerosene

respectively. Let m be the mass of water drop in air. Volume of

water drop = m/p,.

Volume of kerosene displaced by the water drop = i
B
. _ mp,
Mass of kerosene displaced by the water drop = . )
Py
; : _ mp.g
Apparent weight of the water drop in kerosene = mg — .
1

Let o be the surface tension at the interface between the

two liquids.

nr2c mp.,g
+ mg — -
r P,

Then 2nr =

5 = mg .
nr (1 - (p,/p,))

Again the more accurate equation a will be

o= me
3.8r (1 - (p,/p)))




